Hydroxylation of diverse flavonoids by CYP450 BM3 variants: biosynthesis of eriodictyol from naringenin in whole cells and its biological activities
نویسندگان
چکیده
BACKGROUND Cytochrome P450 monooxygenase constitutes a significant group of oxidative enzymes that can introduce an oxygen atom in a high regio- and stereo-selectivity mode. We used the Bacillus megaterium cytochrome P450 BM3 (CYP450 BM3) and its variants namely mutant 13 (M13) and mutant 15 (M15) for the hydroxylation of diverse class of flavonoids. RESULTS Among 20 flavonoids, maximum seven flavonoids were hydroxylated by the variants while none of these molecules were accepted by CYP450 BM3 in in vitro reaction. Moreover, M13 exhibited higher conversion of substrates than M15 and CYP450 BM3 enzymes. We found that M13 carried out regiospecific 3'-hydroxylation reaction of naringenin with the highest conversion among all the tested flavonoids. The apparent K m and k cat values of M13 for naringenin were 446 µM and 1.955 s(-1), respectively. In whole-cell biotransformation experiment with 100 µM of naringenin in M9 minimal medium with 2 % glucose in shake flask culture, M13 showed 2.14- and 13.96-folds higher conversion yield in comparison with M15 (16.11 %) and wild type (2.47 %). The yield of eriodictyol was 46.95 µM [~40.7 mg (13.5 mg/L)] in a 3-L volume lab scale fermentor at 48 h in the same medium exhibiting approximately 49.81 % conversion of the substrate. In addition, eriodictyol exhibited higher antibacterial and anticancer potential than naringenin, flavanone and hesperetin. CONCLUSIONS We elucidated that eriodictyol being produced from naringenin using recombinant CYP450 BM3 and its variants from B. megaterium, which shows an approach for the production of important hydroxylated compounds of various polyphenols that may span pharmaceutical industries.
منابع مشابه
Anthocyanin Biosynthesis in Flowers of Matthiola incana Flavanone 3- and Flavonoid 3'-Hydroxylases
Anthocyanins, Flavonoids, Biosynthesis, Flavanon 3-Hydroxylase, Flavonoid 3'-Hydroxylase, Matthiola incana Enzyme preparations from flowers of defined genotypes o f Matthiola incana contain two dif ferent hydroxylases for hydroxylation of naringenin in the 3and 3'-position, respectively. The 3-hydroxylase is a soluble enzyme and requires as cofactors 2-oxoglutarate, Fe2+ and ascorbate. Besides...
متن کاملDe Novo Biosynthesis of Apigenin, Luteolin, and Eriodictyol in the Actinomycete Streptomyces albus and Production Improvement by Feeding and Spore Conditioning
Nutraceutical compounds as plant flavonoids play an important role in prevention and modulation of diverse heath conditions, as they exert interesting antifungal, antibacterial, antioxidant, and antitumor effects. They also possess anti-inflammatory activities in arthritis, cardiovascular disease or neurological diseases, as well as modulatory effects on the CYP450 activity on diverse drugs. Mo...
متن کاملGenetic Control of Flavanone 3-Hydroxylase Activity and Flavonoid 3'-Hydroxylase Activity in Antirrhinum majus (Snapdragon)
Anthocyanin Biosynthesis, Antirrhinum majus, Flavonoids, Flavanone 3-Hydroxylase, Flavonoid 3'-Hydroxylase, Genetic Control In flower extracts of defined genotypes of Antirrhinum majus, two different hydroxylases were found catalysing the hydroxylation of naringenin and eriodictyol in the 3-position and of naringenin in the 3'-position. The 3-hydroxylase is a soluble enzyme and belongs accordin...
متن کاملEnzymatic Synthesis of 4'- and 3 ' ,4 -Hydroxylated Flavanones and Flavones with Flower Extracts of Sinningia cardinalis
Flavonoid Biosynthesis, Chalcone Synthase, Flavonoid 3'-Hydroxylase, Flavone Synthase II, Sinningia cardinalis Flowers of Sinningia (syn. Rechsteineria) cardinalis contain glycosides of the flavones apigenin (4'-O H ) and luteolin (3',4'-O H ) respectively, and of the related 3-deoxyanthocyanidins apigeninidin and luteolinidin. Studies on substrate specificity of the key enzyme o f flavonoid bi...
متن کاملStudies on Columnidin Biosynthesis with Flower Extracts from Columnea hybrida
Columnidin, the characteristic 3-deoxyanthocyanidin of some Columnea species, possesses the 3',4'-B-ring hydroxylation pattern of luteolinidin and an additional hydroxyl group at the A-ring, most likely in the 8-position. Studies on substrate specificity of chalcone synthase and flavanone 4-reductase and the demonstration of high flavonoid 3'-hydroxylase activity revealed that the 3'-hydroxyl g...
متن کامل